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A Conservative Formulation of
the Discrete Transfer Method
The discrete transfer method, often employed to calculate radiative heat transfer incombustion chambers, is not conservative. The reasonfor this behavior is examinedand a conservative formulation is proposed and evaiuated. e si*pie ii"ir*"nt o7i-sotropic scattering media is also presented. The original and the coise,native formi-lation .of the method are applied to two-dimensional and three-dimensional enclosures
containing a participating medium. It is shown that the accuracy of the original andthe conservative formulation is very similar, but the proposed'fo"rm"ioliol has theadvantage of ensuring energy conservation.

Introduction
Radiative heat transfer plays an important role in many engi-

neering problems, especially in aeronautics, astronautiis, and
mechanics, and it is the dominant heat transfer mechanism in
many industrial combustion equipments, including boilers and
fumaces. Hence, the accurate prediction of the heit transferred
by radiation is a key issue in the design and operation of com-
bustion chambers. In this case, the calculation ofradiative heat
transfer is part of a more complex problem which invoives the
numerical simulation of a turbulent reactive flow.

Although many radiation models have been developed for
emitting, absorbing, and scattering media (e.g., Viskanta and
Mengiig, 1987), generally based on the solurion of the radiative
heat transfer equation (RTE), most of them are not recom-
mended for coupled fluid flow/heat transfer problems. Despite
their recognized accuracy, some methods, such as the zonal
(Hottel and Sarofim, 1967) and the Monte Carlo (Howell,
1968) methods, require long computing times and involve nu-
merical algorithms very different from those employed in fluid
flow calculations. Others, such as the flux method of Schuster-
Schwarzchild and its generalization for two- and three-dimen-
sional domains (Selguk 1983), have low accuracy. The spheri-
cal harmonics method (e.g., Mengiig and Viskanta, tlSS; ls
not accurate for low order approximations. except in optically
thick media, and the increase ofaccuracy achievable using higl
order approximations is mathematically involved (M;de;t,
1993 ). Three of the most attractive methods, as far as accuracy
and computational requirements are concerned, are the discret'e
transfer (Shah, 1979; Lockwood and Shah, 1981 ), the discrete
ordinates (Carlson and Lathrop, 1968; Fiveland , 1984), and the
finite volume method (Raithby and Chui, 1990; Chai et al.,
1994). They are easily incorporated in reactive fluid flow codes
and a comparative study of their performance for several bench-
mark problems has recently been published (Coelho et al.,
199s).

Lockwood and Shah (1981) claim that the discrete transfer
method (DTM) is economical, straightforwardly applicable to
complex geometries, easy to apply, and able to return any de-
sired de€ree of precision. These features justify its popuiarity
and wide application in calculations in combustion chambeis
(e.g., Gosman et al., 1982; Boyd and Kent, 1986; Carvalho
and Coelho, 1989), as well as its incorporation in commercial
computational fluid dynamics codes, such as FLUENT and
FLOW3D. However, since the method was proposed by Lock-
wood and Shah, only a few fundamental studies or extensions
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have been_ reported. Murthy and Choudhury (1992) applied
the method to two-dimensional domains of arUitrary strafe anO
Carvalho et al. (1993) studied two- and rhree-dimensional en_
closure-" containing a scattering medium. Recently, Bressloff et
al. ( 1995) proposed a new ser of weighting coefficients for the
radiation intensity along each ray tricing Olrection. The new
weighting set is based on the discretization of the hemispherical
solid angle using quasi-equal solid angles in an attempt to pro_
vide a more even distribution of ray directions anO to mitigate
the ray effect. More accurate quadrature formulae for the cJcu_
lation ofthe incident heat flux have been developed by Cumber
(1995.). In the proposed formulae, the incidentlnteniity is as_
sumed to vary within each solid angle resuitant from the discret_
ization of the hemisphere, rathei than being constant, as in
the original method. Similarly, when integrating rhe RTE, the
temperature is assumed to vary linearly in each Control volume.A major shortcoming of the DTM, which has not been ad_
dressed in the literature, is that, in general, the method is not
conservative if the boundary temperature is prescribed, i.e., the
numerical solution calculated by the DTM does not satisfy theprinciple of conservation of energy. This is in contrast with
other competitive methods, namely the discrete ordinates and
the finite volume method, which are conservative. The present
work explains why, in general, the DTM is not conservative
and.proposes a simple correction to overcome this problem. In
addition, it employs a treatment of isotropic scattering simpler
and more accurate than that proposed by Lockwood ana Statr(1981) and used in Carvalhoerh. (1993).
_ A brief description of the method is given in the next section.
Then, the conservation problem is addiessed and two different
modifications are proposed. These are evaluated by means of
the application of the different formulations to benchmark prob_
lems. The results obtained are presented and discussed, and the
paper ends with a summary of the main conclusions.

The Discrete Transfer Method
Original Formulation. The main features of the DTM are

described below in order to facilitate the discussion of the con_
servation problem. A complete description of the method is
given by Lockwood and Shah (19S1).-

The DTM is based on the numerical solution of the RTE
along specified directions. For a gray medium, as considered in
!h11^qaper, the RTE may be wrinen as follows (e.g., Modesr,
1993 ):

dl n fa".=_il*11,+::;ds 4n Jo
1(S')d(S', 5)d0' (1)

The ratio Q(S', i)/4n represenrs the probability that radiation
propagating in the direction 3' and confined within the solid
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angle df)'is scattered through the angle (S', S) into the direc-
tion S confined within the solid angle dO. The absorption, scat-
tering, and extinction coefficients are related to the single scat-
tering albedo as follows:

u : o"l(rc-l o,): 6,1 B Q)
Equation ( 1) is a statement of the principle of conservation of
energy applied to a pencil of radiation traveling along direction
s.

In the DTM the physical domain is divided into control vol-
umes (CV). The temperature and the radiative properties of the
medium are taken as constant in each one of them. For all the
CV adjacent to the boundary, the central points of the faces of
the CV coincident to the boundary are determined. Let P, be
one of such points. The hemisphere centered at P; is discretized
into a prescribed number of solid angles. Each solid angle de-
fines a direction along which the RTE is solved.

Hence, given a point P, at the center of a cell face on the
boundary, a radiation beam is fired from P; for each one of the
directions specified above (Fig. l). The path of a radiation
beam is followed until it hits another boundary. Let 0; be the
impingement point. Although, in general, 0r is not the central
point of a boundary cell, it is assumed that the radiation intensity
atQt and at the central point of the boundary cell which contains
Q' are equal. Then, starting from Qi, the path of the beam is
followed back to the origin (point P;) and the RTE is integrated
analytically along this path. Henceforth, the radiation beam trav-
eling from Pi to Q; will be referred to as a radiosity ray, and
the radiation beam traveling back from Qt to Pt will be referred
to as an irradiation ray. The starting point of a radiosity ray and
the ending point of an irradiation ray are always the center of
a cell face on the boundary. On the contrary, the ending point
of a radiosity ray and the starting point of an irradiation ray do
not usually coincide with the center of a boundary cell face.

The integration of the RTE yields (Lockwood and Shah,
1981 ):

n th control
volume

x

Fig, 1 Projection onto the x-y plane of the radiation beams resultant
from the discretization of the hemisphere cent€red at the boundary point
Pj

In*,;-j = I,-.;-ie-P5" + - a)Io[,'
+ (u/4n) f" ^,1,'y41r', s)dCI']c, - ,-,*l (3)

where the subscript j +j identifies the direction of the irradiation
ray traveling from Q; to P;, and the subscripts n- and n * denote
the points where that ray enters and leaves the nth CV, respec-
tively (Fig. 1 ). In the CV where the irradiation ray originates,
n- coincides with Oi; in the control volume where the irradia-
tion ray hits the boundary, n* coincides with P;.

The incident radiative heat flux at point P1, i.e., the irradia-
tion, is calculated by adding the contributions due to all the
irradiation rays that reach point P; (one for each solid angle

Nomenclature
A = Area
C: Correction factor

Q.; = Integral of cos d;.; over a
solid angle element associ-
ated with the direction j +
i

E: Absolute error
Et, Er, E: = UnsteadY, conductive and

radiative terms of the en-
ergy equation integrated in
space and time

G = Incident radiation
11 = Irradiation onto a surface
1= Radiation intensity

I*.;-; = Radiation intensity at point
ft of an irradiation ray ffav-
eling in direction i +J

"I = Radiosity
k = Thermal conductivity
i = Unit surface normal
N = Conduction-to-radiation

parameter
N1 = Number of ccrntrol volumes

along x direction
N"I = Number of control volumes

along y direction
Na = Number of I angles per oc-

tant
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N,p = Number of g angles per octant
4 = Radiative heat flux
0 = Dimensionless heat flux
O = Volumetric heat source
s = Geometric path length
S = Unit vector into a given direction
S = Radiative source tenn of the en-

ergy conservation equation
t = Time
Z: Temperature
a = Thermal diffusivity
f = Extinction coefficient
6s = Optical length within a control

volume
A/* = Time step
AV = Volume
Ad = Discrete polar angle
Ag = Discrete azimuthal angle

AClr., : Discrete solid angle associated
with the direction j + ;

e = Emissivity
r7 = Relative error
d = Polar angle; dimensionsless tem-

perature
d;.; = Angle between the surface nor-

mal at P; and the direction j + ;
r = Absorption coefficient
a = Stefan-Boltzmann constant

a, : Scattering coefficient
r: Optical coordinate
d = Scattering phase function
g = Azimuthal angle
f = Dimensionless radiation inten-

sity
cu = Single scattering albedo
O = Solid angle

Subscripts
avg = Averaged value over a control

volume
D = Blackbody value
8=Gasj - i = Direction from point P; to point

Q'
n = Control volume

ft-, n+ = Entry (n-) into or exit (n *)
from a control volume

o = Reference value
P = Point P

.r, Y = Cadesian coordinates
w = Wall

Superscripts
* : Dimensionless quantity
- = Mean value
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Cell Face j

Fig.2, Projection onto the x-y plane of all the irradiation rays that arrive(solid lines) or start (dashed lines) at the boundary cell face centered at
P1,lor Nl = /VJ = 3 and No = N, = 2

resultant from the discretization of the hemisphere centered at
P;)t

f2"H,= | /(S)n.SdQ =\11.,-1D1.,.Jo

{.,-; is the radiation intensity at point p, of the irradiation ray
traveling from Qi to Pj. It is important to point out that only
the radiation intensity of irradiation rays is involved in DTM
caiculations. D;.i is the integral of the cosine of the angle d;.;
between the surface normal at Pj and the direction j + i over a
solid angle element AQ.i:

(4)

a
---------|'-

x

Fig. 3 Geomew of test case 1

lr
D,., = | cos g;.i dQ

J n o''1)

: cos d;,r sin dr;; sin (L?1)LW;.,. (5)
Since the solid angles ( ACl.,., ) are defined from the discretization
of a hemisphere cenrered at pj, the following identity holds:t D..: -- "J.t
i

The solution of the RTE requires the specification of the
boundary conditions. If the wall temperatur6 is prescribed, the
boundary c^ondition for a gray diffuse boundary surface may be
written as follows:

Ji: e*oT|+ 0 - e.)Hi. (6)
The calculation procedure is iterative, unless e. = 1, because
the radiation intensities of the irradiation rays at the points e;are not kngwn a priori. Other boundary conditionj may U"
treated as described by Lockwood and Shah ( 1 9g 1 ) .
. The radiation source (or sink) for each CV, which appears
in the energy conservation equation, may be defined as 

^ ^

Table 1 Ratio between the heat rate received and the heat rate leaving the boundary ot the enclosure of testcase l.calculated using DTM-O, mean absolute errors of the normalized-incident heat ilux on the boundary, andnormalized emissive power at x = 0

alb Mx NJ NsxNe IAi Hij
E(q/oT{,)x toz E(rtnl,)x 102

IAi Jjj DTM-O DTM.1 vlM:z DTM{) DTM.I DrrM-2

0.2

10x20 2x2 0.8750 1.38 t.4t 3.04 3.22
10x20 5x5 0.9984 0.38 0.38 0.41 0.85 0.85 0.80
20 x40 2x2 r.0000 1.30 1.30 1.36 2.78 2.78 2.88
20x40 5x5 1.M26 0.44 0.43 0.46 0.74 0.72 0.77
40 x80 )w) 0.9063 1.39 t.37 i.53 2.E4 2.81 3.26
40 x80 5x5 t.0267 0.43 0.43 0.52 0.74 0.72 1.05
40 x80 10x 10 1.0262 0.15 0.14 0.14 0.59 0.46 0.51

5

20x10 2x2 t.0t25 3.09 2.71 2.89 0.81 0.83 2-02
20x 10 5x5 1.0002 t.t2 1.1 1 1.06 0.23 0-23 0.52
40x?.I 2x2 1.0000 3.r9 3.t9 3.01 0.81 0.8r 1.75
4OxZO 5x5 0.9957 1.35 l.r9 r.30 0.25 0.32 0.67
80x40 2x2 1.0094 3.06 2.88 3.15 0.81 0.81 1.67
80x40 5x5 0.9973 t.25 1.1 8 1.30 0.26 0.29 0.67
80x40 10x 10 0-9974 0.94 0.84 0.77 0.17 0.19 0.19
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s=J.
where { is the radiative heat flux vector and the integration is
carried out over the surface area, CS, of the CV. However, the
DTM does not perform a discretization of the RTE over a
CV. Therefore, the source term S is not evaluated from the
discretization of Eq. (7). Instead, the source term for a CV is
obtained from the sum ofthe contributions of all the irradiation
rays which cross that CV. It is assumed that the contribution
of each irradiation ray is proportional to the change of the
radiation intensity leaving and entering that CV. This yields the
following equation:

S, = >2Q,..,-,- I;.;-)D1.A1 (8)
ji

In this equation, index / runs over all the boundary cell faces
and index i extends over all the irradiation rays hitting cell facej. If an irradiation ray traveling from Qi to P, does not cross
the nth CV then l,*.ni: I;.,-i = 0.

Consideration of Scattering. The calculation of radiative
heat transfer in scattering media requires the computation of
the integral which appears in the in-scattering term (Eq. 3).
Lockwood and Shah ( 1981) have approximated this integral as

f4nI 11s';41s', s)do' = I (1(3'))",rd(s', s)ao' (9)
.ro

where the averaged intensity is taken as the arithmetic mean of
the radiation intensity at the inlet and outlet of the CV. The
summation extends over all the irradiation rays that cross ttte
CV. This approximation was successfully used by Carvalho et
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o-l
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al. ( 1993) for isotropic scattering media- and we are not aware
of any attempt to apply it for anisotropic scanering media.

In the case of isotropic scattering, however. the approxima-
tion used in Eq. (9) can be avoided. In fact, in this case the
scattering phase function is equal to one. Therefore, the integral
in the in-scattering term is equal to the incident radiation

1(S')d(S" 3)dQ', = G. ( 10)

If the equation for the conservation of radiative energy (e.g.,
Modest, 1993)

Y.q=x(4oT4-G) (11)

is integrated over the CV, the left hand side yields the radiation
source ( or sink) of the energy conservation equation, ,S . There-
fore, Eq. (11) can be used to compute G as

!t

=o
E

tt
;t-
ct)

!t

=Fb
ct

$

=l-b
ct

o-o o.2 0.4 0.6 0-a 1.o o-o o.2 0.4 0.6 0.4 1.o
xla xla

Fig. 4 Predictions for test case't with alb = 5 and rvo = l'r, = 2 (solid line: Crosbie and Schrenker; O-DTM-O,
X-DTM-I; A-DTM-2): (a) normalized emissive power atx = 0; (b) normalized incident heat flux on side rnll; (c)
normalized incident heat flux on top wall; and (d) normalized incident heat flux on bottom wall.

q.fidA = l. f" I(s)n.sdodA (7)

G=4oTo- S

xL.V
(t2)

In this way, the in-scattering term is easily obtained without
the approximation embodied in Eq. (9). In the case of pure
scattering (r = 0), Eq. ( 12) is notapplicable. However, the case
of pure scattering is mathematically equivalent to an absorbing-
emitting medium in radiative equilibrium (Modest, 1993).
Therefore, in such a case the incident radiation is given by G
= 4oTa.

Conservative and Non-Conservative Formulations. A
desirable feature of any solution method for the RTE is that the
numerical solution satisfies conservation of energy. However,
in general, the numerical solution obtained using the DTM does

a) Ns= N*=2 b) Ns=Nr=2

c) Ne=N,o=2 d) N6=N*=2
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o.03
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a) N6=N*=S
Nl=lQ,NJ=!Q

b) Ne=Nr=5
Nl=lQ,NJ=29

Side Wall

Bottom Wall

Ne=N..=20d) Nl= 2g', NJ = 4o

2 e,4 = ll l,.r,D,,A,.
jji

-l 'o.4 0.6 0.8 1_O

vlb
l'_'1 "1,'o.o o.2 0-4 0.6 0-a 1-o

vlb

o-6

o.4

o-o

o-02

o.o 1

Top Wall

^r N6=N*=5wt Nl=lQ,NJ=20

Fig.5 Predictions fortest case l w]f.h bra = 5 (sorid line: crosbie and schrenker; o-DTM_O; X_DTM-l; A-DTM-2): (a) normalized emissive power atx = o; (b) normalized inciaent treat tiui .i ii"l"Ilr; {c) normalized incidentheat flux on top wa[; and (d) normarizea intifuent n""iiru, on bottom wail.

| ,_r . t..,t,.,1_rf_lo-o o-2 0.4 0.6 0-8 1-O

xla xla

2 A,J, = \\ r,.,-,D,,A1. ( 16)
not satisfy this principle. The reason why this happens is exam_
ined below and alternative conservation formulaions are pro_
posed.

If thermal radiation is the only mechanism of heat transferpresent, the principle of conservation of energy applied to anenclosure states that the net heat rate leavin-j the enclosure
thrgugh its boundary is equal to the differen"ce between thera$1iv9 energy generated (emitted) and destroyed (absorbed)
within the enclosure per unit time. Mathematlcaty, this meansthat

Interchanging indices t *d; on the right hand side of rhisequati.on. and applying rhe commutative Lw of addition, yieidsthe following;

(17)

where the summation on the left hand side runs over all thecell faces on the boundary and.that on the right hand sideextends over all the control volumes. This equado"n is also validfor a scattering medium since scaftering only redirects radiation
beams and does not change the energf balance.
- From Eq. (8), the radiative heat solrce in the enclosure maybe expressed, using the cornmutative law of addition, as

I s" = I I tL (r,..,, _ l,_)lDi.;A1. (14)
njin

Th.e term.in the square brackets represents the change of theradiation intensity of an irradiationiay along its pattifrom e,to Pr. Therefore, Eq. ( 14) may be written as-

In this equation, index .t runs over all the cell faces on thepoundary, and index i exiends over all the irradiation rays trauet_ing in direction j - i.
In the DTM, the irradiation rays that start at cell face j andtravel in directionj * i are not associated with the discretiiation

or_a nemrsphere centered at a point on the boundary cell face
7. Hence, the number of these irradiation .uys -ay cfrange fromcell to cell and, in general, for a given."fi;,-iirriff #:;,;
+ z- (in contrasr to ) e; = a,), as illustrated below using a
simple example. TheLfore, sefting {,r-i = J1/n for diffusely
l1d^lg-:..1::ting boundaries, eq.-q i7I'i. no', generally satis_neq. even rf the areas are all equal.
,. Ar 1n example, consider a tw-o_dimensional square enclosureorscreuzed usrng a uniform grid with 3 x 3 control volumes
llo"j":.::tt! yst"'.per.oitant (Ne = No = 2). Althoughmese spahal and angular discretizations may be too coarse ifan accurate solution is sought, they are adequate for the present
P11+gse, Figure 2 shows. the-projection onto the r_1, piane ofall th9 irydialior rays that hit iel face j Th; sotia angtesassociated with these rays have resulted from thediscretization
or a hemrsphere and, therefore,2 Di,; = 2.. Figure 2 also shows

2Ai(Hi-4)=L&
i"

( 13)

E s" = L I (/r'-; - I;i-)Di.tA1. (15)
4ji

Inserting Eqs. (4) and (15) into Eq. (13) and simplifying,
results in

122 I VoL 119, FEBRUARY .1997
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the projection onto the x-y plane of all the irradiation rays
starting at cell face j which strike different boundary cells. It
can be seen that there arc 14 inadiation rays leaving cell facej. Each dashed line plotted in Fig. 2 corresponds to a pair of
rays, one fired in the positive e direction and the other in the
negative z direction. The solid angles associated with these
irradiation rays do not add up to 2n, and it is not difficult to
verify that 1r', = 7rl8 for the cell face j in Fig. 2 (notice
that Ad = Lg : n/4, and 0 -- r/8 or 0 = 3118, yielding D;,
= constant = n l16 and ) D;; = '1r /8). Hence, in general, Eq.
(17) is not satisfied. i

A solution method is conservative if and only if the numerical
solution satisfies Eq. (13). However, it was shown that, in
general, the DTM does not satisfy Eq. ( 17) and, therefore, Eq.
(13) is not satisfied either, i.e., the original formulation is not
conservative. It is important to emphasize that no assumptions
about the radiative properties of the medium have been made
in the derivation of Eq. ( 17) or in the example described above.
The original formulation is nonconservative regardless of the
radiative properties of the medium, including the especial case
of a transparent medium.

To achieve a conservative formulation, two different methods
are proposed based on a modification of the heat rate associated
with the irradiation rays leaving the boundary cells. In one of
them, hereafter referred to as DTM-I, the right hand side of
Eqs. (14) to (17) is multiplied by a global correction factor,
C, to ensure that the heat rate leaving the boundary of the
enclosure is conectly evaluated as2 A1J1. This global correction

factor may be obtained from Eq. (\l) atterreplacing f.;-; with
J;/r,

for a two-dimensional rectangular enclosure with the soiutions
reported by Crosbie and Schrenker (1984). The method of
Crosbie and Schrenker is based on the numerical solution of
the integral equation for radiative transfer (removing the singu-
larity) and yields accurate results except at very large optical
thicknesses. Figure 3 shows the geometry for this problem. The
walls of the enclosure are black and at zero temperature, except
the top wall which has an emissive power of unity. The optical
thickness of the enclosed medium along the y direction is equal
to one, i.e., Bb : 1, and the medium is assumed to be in
radiative equilibrium. Two different configurations were srud-
ied: alb: 5 and bla = 5.

Since, in this problem, a volumetric heat source, B, is pre-
scribed (Q = 0), an iterative procedure is required. Starting
from an initial guess for the temperarure field, an iteration of
the DTM is carried out allowing the calculation of the radiative
source term S. Then, the temperature field is updated for each
CV as follows:

a)

yielding

c= ( 1e)) 4() D;;Aitr)

This is mathematically equivalent to set d.,.-; = CJiln when
applying Eq. (3) to the irradiation ray starting at cell face j.

In the other modification, which will be referred to as DTM-
2, a local correction factor, Q, is applied to each boundary cell,
such that

2a,t,:>>4 cDijAi
j j i1r

f
AiJi=>!!C,D,,A,

i7r

^A,' 2 D;;A;/r
i

coE 2.0
Eul

I 1.5oc
UJ
o5 1.0
o
an
Eb o.s

2 Ai4

!OD
oErrr 0.04
o.:
.(E nnt!t
GE
; o'02
o
r! o,ol

( 18)

(20)

(2t)

(22\

The iterative procedure continues until the difference between
the new and the old temperature fields decreases below h pre-
scribed tolerance.

Table 1 shows the ratio between the heat rate received and
the heat rate leaving the boundary of the enclosure calcuiated
using DTM-0 for the two studied configurations and for several

(ro)n* - (ra)od . (o - *) *

t'x 104

0.0

0.06
b)

yielding

The DTM-2 can be applied only if there is at least one irradiation
ray leaving every boundary cell. Otherwise, the denominator in
Eq. (21) will be zero. However, this situation is likely to occur
only if coarse angular discretizations are used.

Both DTM-1 and DTM-2 are conservative, i.e., the numerical
solution satisfies Eq. (13); they are evaluated below and com-
pared with the original method (DTM-O).

Evaluation of the Conservative Formulations
Test Case l-Two-Dimensional Rectangular Enclosure

With an Emitting-Absorbing Medium. Evaluation of the
conservative formulations for an emitting-absorbing medium
was undertaken by comparison of the predictions of the DTM

Journal of Heat Transfer

0.00

fx10a
Fig. 6 Transient combined conduction-radiation problem in a two-di-
mensional enclosure: (a) terms of the energy conservation equation inte-
grated in time and over the whole enclosure (Eq. 28), and dimensionless
temperature at the center of the enclosure; (b) absolute and relative
errors of the radiative energy Es.

15010050

NI=20,NJ=10
No=N*=2

Nl=80,NJ=40
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Table.2 Terms o'f the global energy balance for the three-dimensional rectangular fumace of test case 3calculated using the original formulation of the DTM

spatial and angular discretizations. This ratio should be equal
to one because there are no radiative sources or sinks in the
medium. The results show that as the spatial and the angular
discretizations become finer, the predicted ratio approaches one,
but not monotonically. If a / b : 0.2, an imbalan ce of 2.6 percent
occurs for fine spatial and angular discretizations, which in-
creases for coarser discretizations, while if alb = 5, the imbal-
ance is smaller. The DTM-0 is not conservative, except in two
of the cases. On the contrary, the proposed conservative formu-
lations always yield a ratio of unity. This does not mean that
they are more accurate, but simply that they are conservative.
Indeed, both DTM-I and DTM-2 always yield a unity ratio
regardless of the solution accuracy.

The mean absolute errors of the normalized incident heat flux
on the boundary and the normalized emissive power at r = 0
are also listed in Table 1. These errors are defined as the absolute
value of the difference between the numerical solution and the
reference solution of Crosbie and Schrenker, averaged over all
the cell faces on t}le boundary, for the incident heat fluxes, or
over all the CV crossing the line.r = 0, for the emissive power.
The results show that the solution accuracy is only marginally
influenced by the spatial grid refinement, regardless of the
method employed. On the contrary, a finer angular discretization
yields improved accuracy.

In the case alb = 0.2, the results obtained using DTM-I are
slightly more accurate than those calculated by means of DTM-
0, except for the coarser discretization. The DTM-2 is less accurate
than the others, except for the finer discretization. Moreover, it
cannot be applied to the coarser discretization because no irradia_
tion rays leave the cell faces on the top and bottom boundaries
which are adjacent to the vertices. Inthe case alb = 5, the accuracy
of DTM-0 and DTM-I is similar, but the mean absolute error
of the normalized heat flux is lower using DTM-I, while the
corresponding error of *re normalized emissive power is lower
employing DTM-0. The DTM-2 is much worse regarding rhe
prediction of the emissive power of the medium, except for the
finer discretization, but performs similarly to the otherJ as far as
the heat flux calculation is concerned.

Additional insight into the predictions is provided in Figs. 4
and 5. Figure 4 shows the predicted results obtained for a reitan-
gular slab with alb = 5 using a grid with 20 x 10 CV and Ne
= No -= 2; they closely follow the solution of Crosbie and
Schrenker. As expected from the ratio2 AlHi/2 A;J, = 1.9125
and from the mean absolute errors lTable:), jne results com-
puted using DTM-0 and DTM-I are almost identical.

The columnar shaped geometry with bla = 5 was studied
using a grid with 10 X 20 CV and Na = N, = 5. The predictions

Table 3 Mean relative errors of temperature and net heat fluxes for test case 3; the runs are characterized inTable 2

Run
K

(m-1)
Og

(m'1)
NIxNJxNK N6xN9 IAt H.r

J

(kw)
I4lr

J

(kw)
ES"
(kw)

I, Ar (sr-rr)- I s"
J!

(kw)
1

0.2s 0

9x9x15 2x2 tM4.? 17ffi.7 80_0 3.6
2 9x9x15 5x5 1840 5 1759.7 80.o 0.8

77 x27 x45 5x5 1E39.4 1759.2 80.0 0.2
4 27 x27 x45 10x1O 1838.6 1759.0 80.0 0.4

0.5 0 9x9x1 2x2 1840.4 1756.R 80. 3.6
6 9x9x 15 5x5 1836-5 1755.7 80. 0.9
7 1.0 0 9x9x15 2x2 1834.8 1751.0 80.0 3.8
8 9x9x15 5x5 1830.9 1750.0 80.0 0.9
9 0.15 0.35 9 x 9 x 15 2x2 1840-4 1756.8 80.0 3.6

10 9x9x15 5x5 1835.5 775\ 1 80.0 0.9

Run
i-G) x 108 R-(q) x 102

DTM.O YTM.I DTM.2 DITM{ DTM.l DTM.2

1 1.03 1.01 1.37 2.78 2-77 6.00
) 0.33 0.33 0.38 0.84 0.86 1.03
3 0.31 0.31 0.41 0.79 0.80 1.00
4 0.27 0.27 0.26 0.81 0.80 0.88
5 0.90 0.88 1.r4 L.t2 |.12 5.58
6 0.30 0"29 0.33 1. r8 1.20 t.45
7 0.73 0.71 0.99 1.00 0.90 4.34
8 0.23 0.22 0.32 1.39 t.39 1.04
9 0.73 0.72 0.98 T.L2 1.18 5.58
10 0.25 0.25 0.32 1.18 1.20 t.4s
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-

of the three methods are similar and close to the solution of
Crosbie and Schrenker, as shown in Fig. 5. However, even this
discretization is unable to reproduce the incident heat flux on
the bottom wall, not shown here. This is explained by the shape
of the enclosure and the boundary conditions. Only tire top *"lt
is hot, and the gas temperature is only significani close to this
wall, up to ylb x 0.2 (Fig. 5a). Therefore, radiosity rays fired
from the bottom wall must reach the top region of thl enilosure
to contribute to the incident heat flux at the bottom wall. Sincebla is large, only a few radiosity rays actually reach the top
region, especially if they are fired from.r close to zero. This ii
the so-called ray effect (Lathrop, 1968; Chai et al., 1993) which
is also responsible for the nonmonotonic convergence and the
lack of accuracy at coarse resolution. It explain-s the need to
use a very fine angular discretization (Np = N, = 20) to satisfac_
torily predict the incident heat flux on the bottom wall (Fig.
sd).

Test Case 2-Two-Dimensional Transient Combined
Conduction-Radiation Problem. A two-dimensional rectan-
gular black enclosure witb alb = 5 is considered again in this
test case. A transient coupled conductive and radiative heat
transfer problem is analyzed to show the accumulation of errors
in the energy balance along the time. The mathematical formula-

Journal of Heat Transfer

tion of the problem for an anisotropic scattering medium in
dimensionless form is given by the fbilowing equ-adons:

a0 a20 a20 I- r.Q0t* 0r1 ' 0rl N'
-Fa<r, 1Ba, 0<rr<Bb, r*>0 (23)

where

Y'Q=Q

r,= Fx, ry= 8y, r,= Fs, t* = ag2t,
0=TlTo, N=k07"/(oTl),
g=ql(oTD, $=I/(oT).

-,>(ot, - [,_r*) (24)

(2s)

(26)

and

#,=-r-# t,*#l",ron
The dimensionless quantities are defined as

b) No=Nr=2

de #o ! et" *lu
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At rx = 0, the temnerature,of the medium and top wall is?,. and the t"^*p".uiur._or the remainiil;^ll, is zero. Thetemperature of &e boundaries is kept 
"onitunt-utong the time.Therefore, the initiat and boundary;;;i;ffi"; Eq. (23) be_come

0(*Pa, r, t*) = 0(r,, Fb, t*1 = g,

0(r,,0, t*) = 7, for t* > 0
0(r,,rr,0):1,

for _ Fa < r,1 Fa, 0 < rr < Bb. (27)
Notice that if the conduction to radiation parameter, .Ay', wereequal to.zero, the presenr probrem *";il;J;;;lified, becom_rngprecisely the purely radiative t"ut t unrfr, fioUf.rn studiedrn test case 1.

Jhe e.lergy conservation Eq. (23) was solved using a finitevolume/finite difference mettroo, *i ,n" f"ify iirplicit methodwas employed for time discretization ic"rril"';, ar., 19g5).Calculations were oerformed f91 a = 0,7 =';'= l, oT) = 1,and N = l. A discietizat,nn. with SO ><-a6.o;rol volumes, Np= N, = l0 and Ar* - tg l"u, J".t"dl iir""'ulc,r.u.y or trr"time discretization was checked ;t;;pd;il catculationsusing 3 time-step equal to 0.5 x i0-i. fr*?, iorno that thenumerical solution is independent of Ar*l for th"i*o ."port"Ovalues.
Figure 6a shows the svmmeric of the unsteady, conductive,and radiarive terms of Ee. f zsi i"r.c;;;"* i;. whole do_main from 0 ro r*, with i* = i.S xiO:{
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The temporal evolution of the dimensionless temperature at thecenter of the enclosure (2, : 0, ", : B;j;;';: also ploned.These resurts *"." .o.putia rrtng'or#li ij ll,* the RTE.
_s111;._tr-re 

temnerarure oi rr,. u"rr?ii";i;#j, the mediumrecerves energy from tle tip wall and to*". 
"n".gy to tir.remaining walls bv conduction u"d.;-i;;;. "ctooutty, 

.n"rgyis released from tire *.Oiurn_to tt"^ril",irrarr'gi by radiationand conduction. uD ro r* 1 50_ " io I *rrii."r-lo ,..np..u,ur.of.the medium decreases. to.. targe, vai;;; A the mediumstill looses energy bv conduction -but i" i.*p.*,"r. is alreadysmall en ough such that v . 
.O_oecomes G;'r#; T1," conductiveand the radiative terms oftq. (rti;;A-;;lo.np"nrut" .u"hother such that the temDerature of'tne meaium and the total

;lJgJ;;f.f* levet off is steady state i; ;pp;;ched for large
The numerical method,used to solve Eq. (23)is conservativeand, therefore, the numerical solution i"riihlrii" grobal energy

!ara1r9e Et = Ez + a, .?e*ai";;; ililil;ised to sorvetllR$._ noweuer, if briu_o i,,r"a,'[" iio"Jnrionr"r, ror_of Eq. ( 13) is not satisnea. Hence, th;;#;f V.b fed into Eq.

x (m) x (m)
ii*i".if:'iliH#:iilff:;;"$'ff* ri.#;;i (r-zonar method; o-DrM-0;X.DrM.1; a,_DrM_2): (a)

1-5 2.O

u,=l*.f 1""ffaa,,a,.
,, = !*0. [: 1,. (#. #)*,,*.
,,= [*0.[: [,. (-Y7*,,*.

(28a)

(28b)

(28c)
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( 23 ) , integrated over the whole domain, does not correspond to
the net radiative heat rate on the boundary of the enclosure.
This does not happen if DTM-I or DTM-2 are used.

The present problem has no analytical solution which pre-
vents the calculation of the numerical errors. However, it is
easy to compute the absolute value of the difference between the
radiative energy term E3, calculated using DTM-0 and DTM-1,
as well as the ratio of this difference to the result of DTM-I.
These quantities are a measure ofthe absolute and relative errors
of the radiative energy term E3 calculated by means of DTM-
0, taking the results of a conservative method as a reference.
They quantify the imbalance in the dimensionless form of Eq.
(13) and represent the extent over which the nonconservative
formulation departs from a conservative one. These errors are
shown in Fig. 6D for coarse and fine discretizations. It can be
seen that both the absolute and the relative errors accumulate
along the time. This increase is larger for the relative errors as
a result of the decrease of I E3 | for r* > 50 x l0-4.

Test Case 3-Three-Dimensional Rectangular Furnace
with an Emitting-Absorbing-Scattering Medium. The rect-
angular furnace idealized by Mengiig and Viskanta (1985),
and also examined by others (Jamaluddin and Smith, 1988;
Truelove, 1988; Carvalho et al., 1993 ), was selected for evalua-
tion of the methods in a three-dimensional gray enclosure. The
dimensions of the furnace are 2 x 2 x 4 m3 in -r, y, and z
directions, respectively. The emissivity of the walls is 0.7, ex-
cept at z: 0 m, where e* = 0.85. The temperature of the walls
is 900 K, except at z = 0 m, where 7. = 1200 K, and at z =
4 m, where T. = 400 K. There is a prescribed volumetric heat
source equal to 5 kW/m3. Standard calculations were performed
using a grid with 9 x 9 x 15 CV, uniform in each direction.
Several angular discretizations and radiative properties of the
medium were considered, as described below. Additional calcu-
lations were carried out using much finer spatial and angular
discretizations (27 x 27 x 45 CV, N, = N, : 10).

The computed heat rate received and leaving the boundary
of the enclosure, the radiative heat source, and the imbalance
of the energy equation are listed in Table 2 for the different
studied cases. The imbalance is about 0.2 percent for N, = 1ut: 2, and 0.05 percent for N, = N* = 5, regardless of the
absorption and scattering coefficients. If the proposed conserva-
tive formulations are used the numerical solution satisfies the
energy equation.

The mean relative errors of temperature and net heat fluxes,
taking the zonal method solution reported by Truelove ( 1988)
as a reference, are given in Table 3. DTM-2 generally yields
larger errors than the others. Since the predictions of DTM-2
were also worse than the others in test case 1 and, in addition,
it cannot be always applied, DTM-2 is not recommended for
practical applications. The accuracy of DTM-0 and DTM-I is
similar, with slightly lower errors for the temperature if DTM-
I is used.

The predicted gas temperature distribution along the center-
line of three different planes and the net heat flux along the
centerline of the hot (z = 0 m) and cold (z = 4 m) walls are
displayed in Fig. 7 (Ns = N, = 2) and 8 (Nd = N, = 5), for
x = 0.5 m-rand a,:0 m-t. The zonal method solution
(Truelove, 1988) is also shown for comparison purposes. As
in the previous test cases, the soiution computed using DTM-I is very close to that of DTM-0. The DTM-2 yields rather
poor predictions of the net heat fluxes for Ne : N, = 2 and
exhibits larger oscillations than both DTM-I and DTM-0. A
possible explanation for this behavior is that the ray effects are
enhanced by the local correction ofthe radiation iniensity leav-
ing a boundary, yielding larger oscillations and worse predic-
tions.

The predicted temperatures exhibit unrealistic oscillations at
z = 0.4 m and z : 3.6 m for the coarser angular discretization.
These wiggles are attributed to the ray effects. Nevertheless,
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Fig. 9 Predicted temperature (K) profiles for test case 3 with an emit-
ting-absorbing-scattering medium (l-zo{rat method; O-DTM-O; X-
DTM-I)

the DTM predictions are within 20 K of the zonal method
solution. Small oscillations are also obsen-ed for rhe net heat
flux at the cold wall. If a finer angular discrerization is used,
the results become closer to the zonal method solution, as shown
in Fig. 8. Although not shown fisre. similar results were
obtained for nonscattering media u'ith rc : 0.25 m-r and x =I m '.

Finally, an emini.ng-absorbing-scattering medium'*'ith c,.; =
0.7 and F = O.S m-' was considered, usilg .Va = .\L = 5. The
net heat fluxes are equal to those calculated for a nonscanering
medium with rc = 0.5 m-r. In fact, the radiative heat flux
distribution is independent of i^u for isotropic scattering with
specified heat generation in the medium (Truelove. 1988).
However, the emissive power of the medium increases, as
shown in Fig. 9. The results obtained using DTM-0 and DTM-
I closely follow the zonal method solution. The accuracy of
the results, taking the zonal method solution as the reference,
is comparable to that observed for the nonscattering medium.

Conclusions
The original formulation of the DTM was examined and

new conservative formulations applicable to enclosures with
diffusely emitting-reflecting boundaries were proposed and
evaluated. A simple treatment for isotropic scattering media
was described and validated. From the analysis carried out the
following conclusions may be drawn:
I The original formulation of the DTM is not conservative.

Imbalance of the energy equation applied to an enclosure
may be large if coarse spatial and angular discretizations
are used. The imbalance decreases with spatial and angular
refinement, but not monotonically.
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2 The original formulation of the DTM is not conservative
because the solid angles associated with the irradiation rays
leaving a cell face on the boundary do not add up to 2n, in
general. Therefore, if the radiation intensity leaving the wall,
taken as J/n, is integrated over all those solid angles, it
does not yield the radiosity "I.3 A local correction of the energy per unit time of thd irradia-
tion rays leaving the boundary (DTM-2) was evaluated.
However, the results obtained were not satisfactory in terms
of accuracy and, therefore, this method should not be used.4 The conservative formulation based on a global correction
of the energy per unit time of the irradiation rays leaving
the boundary (DTM-1) is recommended for future applica-
tions of the DTM. The solution accuracy obtained using this
formulation is very close to the accuracy of the original one
for all the test cases examined, but the proposed formulation
satisfles energy conservation.5 A simple treatment of isotropic scattering was demonstrated.
The proposed method calcuiates the integral appearing in
the in-scattering term using the incident radiation derived
from the equation for the conservation of radiative energy.
No additional approximations are needed to deal with iso-
tropic scattering media besides those embodied in the treat-
ment of nonscattering media.
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