
LIMPO: an improved version
of the PISO algorithm for
turbulent swirling flows

V Semi5o and M.G. Carvaiho
M echanical Engineering Dep artrnent, Ins tituto Sup erior Tdcnic o,

Uniuersity of l)sbon, Portugal

An improved
version of the

PISO algorithm

325
Received August 1995

Revised April 1996

Introduction
The accuracy of computed complex flows is hindered not only by the validity of
the particular physical assumptions employed, but also by the accuracy of the
numerical schemes used to discretize the set of governing partial differential
equations. In order to reduce the inherent discretization errors present in all
fiist-order solution procedures commonly employed these days, a numerical
grid comprising a high number of grid points is required, leading to very large
Ientral piocessing unit (CPU) times and highly expensive computations. This
situation is particularly severe for complex flows where the detailed geometry
has to be described by a large number of grid nodes.

One way of reducing the CPU time is to improve the method of solving the
pressure-veiocity coupled system. The best established methods are the
sitttpt p method[l], the SIMPLERI2] and the SIMPLEST[3,4] in which the
equations for each variable are solved repeatedly in succession. Others utilize
block iteration, such as the SIVA scheme[S], in which the "variables" block is
soh'ed simuitaneousl-v for a single point (or line). Another iterative method of
handling the pressure-velocity coupling arising in the impiicitly discretized
fluid flor,v equations - PISO - was presented by issal6]. This method was
applied by Issa et al.l7l to the computation of two cases of transient
axisymmetric laminar flou'in circular ducts with abrupt enlargement in both
compressible and incompressible situations. The results of the computations
were compared u,ith another existing iterative method, and the PISO appeared
to be faster than its iterative counterpart for transient flows, either
compressible or incompressible, and it exhibited a stable behaviour for large
time-step sizes u.hich makes it a reliable technique for steady-state calculations.

The choice of the main dependent variables for fluid flows must be such that
the priniiti,..e r.ariables (i.e.. r.elocit1,, pressure and density) should be restrained
in the eqr"rations as the u.orking variables. Either the density is chosen to stand
as a main dependent variable, rvherein the pressure is evaluated from it via an
eqLlzlrion of state, or the opposite is done. The many existing methods
deyeloped -.pecifically' for incompressible florvs, for example Patankar and
Soaiding[1]. choose to treat the pressure, rather than the density, as a main . .Engincringcrimpurarions.;:;;;dl i'ariable. ln orcler to determine the pressure nhich, ttrrii. upp.uiirg . ,'l''r]*Il#IL,lt,'i:,i,\
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in each of the momentum equations, vanishes from the continuily relation in the
incompressible limit, a pressure equation is usuaiiy derived by joint
manipulation of those equations (e.g. [2,8]). The resulting pressure equation
replaces the continuity relation u'hile the momenfum equations retain their role
for determining the velocity field, the equations set being coupled via the
pressure and the velocities.

In the present paper an iterative method for handling the pressure-r,'elocity
coupling of the fully-implicitly discretized equations, for two-dimensional
turbulent axisl'mmetric steady flows, u'ith and without swirl, is presented. The
new method (I-IMPO for Linking Implicit Method for Pressure with Operators-
splitting) is based on the PISO algorithm and utilizes the splitting of operations
in the solution of the momentum and pressure equations. In this algorithm, the
calculation of the turbulent quantities (ft and e) as well as the tangential velocity
(w) areembedded into the standard PISO algorithm through the introduction of
new predictor and corrector steps for those quantities. This leads to a further
reduction of the computational effort required to achieve the converged solution,
as far as the number of iterations and the CPU time are concerned. In the work
of Carvalho et al.f9f, this kind of procedure was already followed by embedding
the temperature calculations in the PISO algorithm, for the solution of the
energy and aerodynamic equations of the laminar batch flow in an industrial
glass furnace tank.

Comparisons of the predicted results and of the computational effort, using
the LIMPO algorithm, are made herein against computations with existing
iterative methods employing the same spatial difference practices. TWo different
geometries were used to compare and draw conclusions about the
computational effort required by the three methods: a circular step and a
circular step preceded by a conical quarl.

The SIMPLE algorithm is a very well-established iterative procedure,
although it has to some extent been superseded by SIMPLER and SIMPLEST
algorithmsf4]. The latter exhibits an efficiency frequently comparable to that of
PISO. From the above mentioned algorithms, using pressure and velocity as
working variables, SIMPLE and PISO algorithms were chosen to assess the
potential of LIMPO, by comparison of their performances. The results have
shown a much better performance of the LIMPO algorithm as it allows a
considerable reduction in the number of iterations and in the CPU time required
to obtain exactly the same converged solution.

Mathematical model
Tlu transport equations
The governing equations of a two-dimensional axisymmetric turbulent flow,
with swirl, can be written in a general form, which runs:

gtpuol *19o*o) = 9G. Pl *191rr. $t *s, (1)dx rd ox ox rot ot
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u'ith the corresponding values of O, I-. and S* indicated in Table I. The
quantides C,,. C,, G, C,. o,. and o. appearing in Table I are standard constants
of the A-e rurtrulbnce mudei (see. e,q. f l0]). and are used in these predictions.
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Table I.
The source terms S* and
the diffusion coefficients

f* for different O
variables of equation (1)

where: feff=P+Pt

F, = pCuk2 /e

Gr. = 2Ptr r$it *t*l'+1I;2 1+oxotr
+ p,t (+ **l' * t*l' *(+- I)' loroxoxorr

Variable O ro so

I 0 0 (continuitv equation)

u freff aD lA a"-. A. au.
- ;- + - - (rF.n ;) + ;(trcn ;)cx for dx dx ox

lreff
- + . I9r,u"u *, * 9ru.o 1l - tu?nu * P*t

fi for ot dx or r- r
Feff o\,rr'le. 6(w/r)- ^ (tt.nw)+Feff --^rt tor or

k Feff
op

Gg -Cepe

t
lr eff
oc

C,eGr - Czpe2
k

Finite dffirence fonnulation
The staggered grid arrangement in which the nodes for velocities are located in
between the grid nodes for pressure is used. The discretization of the transport
equations is effected by finite volume techniques for which control volumes (or
cells) surrounding each variable location are defined. Standard practices
employed in earlier worksf1,2] were followed to formulate the difference
equations, hence only a brief description of it is provided below Spatial
variations - convective and diffusive terms in equation (1) - were approximated
by a hybrid upwind/central difference formula giving first to second-order
spatial accuracy.

Integration of equation (1) over a cell yields the final difference equation:
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Ap@p =AN@N +As(D5 +AsO, +A*O* +S*
g,here:

S6rdrdx (3a)

(3b)

(3c)

(3d)

AN,s,r,w = M n,r,.,*0 n,s,e,w

Ap =Att +As +Ap +Aw +divM

divM-Mn-Mr*M.-M*

lre,l<z
Pe; >2

= 0 Pei<Z
The finite difference equation (2), it should be noted, corresponds to the
momenhrm equations (when @ stands for z and a), to the continuity equation
(tD = 1), to the turbulence model equations (Q = k, e) and to the tangential
velocity transport equation (@ = w\, as described in Table I.

The pressure equation is derived from the combination of the continuity and
momentum equations as presented below. For the sake of convenience, a
symbolic operator form, which caters for most of the widely-used spatial
formulae, is employed from now on to present the discretized equations.
Rewriting equation (2),for the u and o velocity components, using the s5..rnbolic
operator form, it runs:

Apup =H(u)-A*p+Su
Apvp =H(v)-A.P+Su

(2)

nes@: J I
SW

In the previous equations, M, stands for the mass flux through the cell face i,
and a,is a rveighing factor depending on the local (cell) Peclet number - Pe, - as
follows:

cri = jrt.frl
=1 (3e)

(4\

(5)

where A, is the finite difference expressionof"(0ldx)andII(ID;) = ,=r,i,#F,The rirass balance for a cell becbmes:

Mn-Mr*Me-M*=0
Equations (4) and (5) give the values of. u and a velocities at the interfaces of the
<D cells, which are used to update the flux values Mo, M,,,, M,, and M" of the
continuity equation (6). Substitution of equations (a) and'i5) iiito equalion (7)
yields the following discretized pressure equation:

(6)



DoPr =J(p)*divH-divSp
that can also be obtained b1, taking the divergence of the
(4)and (5), and u'here:

J(p)= DnpN + Drps + D.pe + Do,prv

Dp = ID,
J=n's.e.w

(7)

momentum equations
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Di=n.r...o = ($),=n.r...*
Ap

H-,=n.r...* = r 
g*9) 

i =n.s.e.wA,.P

St,=n.r...* = (PuSt ),-v r:il.s,c.w - a 
AI.U 

,, l=n,s,e.w

In the previous and follorving equations a stands for the cell-face area.

(8a)

(8b)

(8c)

(8d)

(8e)

Metlzodology of LIMPO
The splitting of operations (or factorization) is not a new concept and is often
invoked either in temporal differencing or in the solution of the discretized
equations as in the Alternating Direction implicit (ADI) technique. However, an
extension of that principle to apply to the coupling between variables, namely
the pressure and velocities in turbulent swirling flows, whereby operations
involving different variables are split into a series of predictor-corrector steps,
has not been previously reported.

Letting the superscripts *, n* and *** denote intermediate field values
obtained during the splitting process, and n the iteration level, and using a two-
stage scheme, similar to the one used by Issal6], the factorization of the
momenfum and pressure equations runs as follows:

Momentum predictor step.The equations for momentum (4) and (5) are
solved implicitly in this step, using guessed values (or values from previous
iteration * n -) for pressure and source terms:

Apui= -.Iliuj +Duful,-pl)+sl (ea)
j=N'S'E'W

Apvl = ,,I11r,vj +D"(pl -pl)+sl (eb)j=N'S,E'W

The solution of these equations yields the u* and u* fields, that satisfy the
momentum equations but do not satisfy the continuily equation.
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Ifiomenfuun -first corrector step. The first correction equations for momenta
are:

Apuf, =. IA.iuj- +D"(pi" -p:)+sl
j=N'S'E'w

*r**ttApvf : Iaiur" +D"(p, -p")+Sl
j=N'S'E'W

Subtracting equations (9) from equations (10) one obtains:

Ap("i- -ui)= lA,(ul- -"j)*Du[(p- -pn)* -(p* -Rn)" I lrta;j=N'S'E'w

Ap(ni- -ui) =,.Il:.t"j- -"j)*D"[ (p- -pn),-(p* -pn)n ] (11b)j=N'S'E'w

Combining the divergence of the previous equations with the continuity
equation (6), and ignoring, as in Patankarf2], the terms LAi(4. - u]) and
LA,(ui* - ui;, the pressure correction equation becomes: r '
jttt

Ap(pi -pF) = 2e1(ni -ni)+sij=N,S,E,W 02)
where:

Ap = IAt
j=N,S,E,w

A - Paj=N,s,E,wDu,unj=N,S,E,w AI"
si = rurl - vrl * vtl" - t"tl

Equation (12) is solved implicitly f.or (p* -p'?), which is then inserted into
eqlations (11a) and (11b) toget explicitly the corrected velocities tt** and I)**.
These velocities completely satisfy the continuity equation but satisfy only
approximately the momentum equations, as the terms )Ottf. - un) and
\e,@i. - ai) *ere ignored. In order to overcome this approximation, thej J'J J'
following steps are added to the process of operations splitting,

TurbuLent parameters (k and e) and tatcgential uelocity (w) Predictor step.
This is a new step embedded in the standard PISO algorithm procedure. It
consists of the evaluation of the source terms of u and u momentum equations
using the most recently calculated values of the participating variables (k, e
andw).

(10a)

(10b)

(13a)

(13b)

(13c)



The a:* veiociry and the turbulent quantities &* and e* are then calculated by
soiving their finite-difference equations (2), using the erun and a** values to
evaluate the convective terms of their transport equations. The values of zc* rvill
affect the equations of motion directly through the source term of the rr velocitl'.
as shou'n in Table I, rvhile the ft* and e* quantities will affect those equations
onl-v indirectl)' thr'ouUn the value of pi = pCu&\21{.

Montentunt second corrector sfep. With these predicted values of ao*, ft* and
r*, the source terms of. u and a velocities, respectively Sj and Sl, must be
updated and included in the momentum equations. The second momentum
correction equations are:

Apui** = IA.iuj- +D"(pLl -pl-)+si
j=N'S'E'w

Apvf,* = IAiui- +Du(pl* -pl-l*sl
j=N'S'E'W

Subtracting equations (10)from equations (14) the following equations are
obtained:

Ar(ui** - uil) = IAiluj- -uj) +
j=N'S'E'w

+Dr[(p** -p*)* -(p** -p-). J+(s; -sl)
Ap('i.- - uil) = f A1(vj- -uj) +

j=N'S'E'w

+ Du[ (p** - p*), - (p** - p*)n I + (s; - sl)
Again, combining the divergence of the previous equations with the continuity
equation, the second pressure correction equation is obtained and is equal to:

Ap(pi- -pl) = 2e3(ni- -nll+sil
j=N'S'E'w

where:

AP = IA:
j=N,S'E'W
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(14a)

(14b)

(15a)

(15b)

(I7a)

(17b)

(17c)

(16)

Aj=*,s,r,* = P&j=N,s,E,wDu,'
Ai,'

+D; -D:-Sil=n]--ol-
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-** IDjln,,,..* =t *." (. E3i'"("i- -ui)+(s,1,, -sl.u))pa )i=n.s..,,* (tzd)A P' i=N.S.E.W

By solving implicitl_v equation (16), the second correction values for the
pressure field (p** *p*) are evaluated. Inserting these values into equations (15a)
and (15b) the velocity fields lz*** and L,*** are calculated explicitl,v. It should be
noted that the a*** and r,*** rzalues satisfy simultaneously the continuity and the
momentum equations.

Turbulent pararneters (k and e) ard tangential uelocig, (w) corrector step.
This is a new step embedded in the standard PISO algorithm procedure.

The eu** veiocity and the turbulent quantities fr** and r** are then calculated,
again by solving their finite-difference equations (2), and using the r/*** and u,***
fields to calculate their convective terms.

The values of lz***, u***, u**, ft**, tn* andp** constitute the set of starting
values for the following iteration or, in the iteration of convergence, the set of the
final solution values.

The test cases - presentation and discussion of results
The aim of the present work is the demonstration of the capability of the
numerical algorithm presented herein, when compared with other algorithms,
rather than the validation of the predicted results by comparison with
experimental values.In order to verify the savings in computing effort achieved
with the LIMPO algorithm, when compared with the SIMPLE and the PISO
algorithms, two axisSrmmetric geometries were chosen to predict the turbulent,
swirling and non-swirling flows within them. The predicted vaiues using any of
the above mentioned algorithms coincide, the number of iterations and the
required CPU time being the parameters of comparison.

Tube witlc sudden enlargement
Figure 1 shows the first geometry used to test the LIMPO algorithm, consisting
of a duct with a sudden enlargement of enfry. The mass flow of water is 9.61 x

'L

332

Figure 1.
Sketch of the tube with
single sudden
enlargement (test case 1)



10-3 kgs-l, at a temperature of 300K, and an inlet velocity of 0.5 ms-1,
corresponding to a Reynolds number of 7.75 x 10p. The dimensions of the tube
are, according to the nomenclature used in Figure 1, R0 = l.24xIA-2 m, R/Rn =
0.5 and //Rn = 16. In order to access the sensitivity of the method to the ntimber
of nodes u6ed in the simulations, predictions were performed for grids
comprising 16 x 16, 32 x 32 and 64 x 64 nodes in the e and r directions,
constituting RUN 1, RtlN 2 and RLIN 3 respectively. The numerical results were
considered converged when the normalized residuals of the governing
equations were less than 5 x 104. The inlet swirl number S (see [11],

o- GeD=_ (19)G.r
where r is the nozzleradius and G, and G, are, respectively, the axial flux of
swhl rnomentum and the axial fluxbf axialmomentum, was varied between 0
and 1.5, with intermediate values of 0.3,0.5, 0.8 and 1.

Figures 2, 3, 4 and 5 show the axial velocity profiles - Uvelocity - at different
axial stations, computed from the three grids used, for swirl numbers equal to
0, 0.5, 1 and 1.5. The predicted values are independent of the algorithm used. It
can be seen that the results produced by the coarsest grid are not satisfactory
for swirling flows. Indeed, as depicted in Figures 3-5, the radial dimension of ttre
cental recirculation zone induced by the inlet swirling flow is underpredicted
by the coarsest grid.

In order to compare the performance of the new algorithm (LIMpO) with
those of SIMPLE and PISQ an optimization of the under-relaxation factors of
the calculated variables was performed. Figure 6 contains the values for the
optimized factors used to obtain the results presented herein. It is clear from the
table that the LIMPO algorithm allows for higher values of the under-relaxation
factors. This effect becomes more evident with the refinement of the grid. The
allowance for looser under-relaxation is due to the embedding of the k, e and n
calculations into the standard PISO algorithm, that permits the calculation of
all variables in two steps (predictor and corrector).

Frgure 7 contains a comparison of the performance of SIMPLE, pISo and
LIMPO algorithms for different swirl numbers, used in the predictions with the
three above mentioned grids, As it can be observed, LIMPO algorithm always
performs better than the two other schemes for both the required CpU time and
number of iterations to achieve convergence ( the CPU time is referred to a Vr\X
DEc 7620). whencompared with SIMPLE andPISo algorithms, LIMpo allows
the computation of the same numerical results with a reduction o{ at least, 35
per cent of the number of iterations. In most cases this reduction exceeds the
value of 50 per cent. Although always with a decrease in its value when
compared with the other algorithms, the cPU time required by the LIMpo
scheme exhibits in some cases a more discrete reduction - see Figure 6, RLIN 3,
swirl number of 0.8. This is due to the extra time consumed during steps c and
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Figure 2.
Non-dimensional axial
velocity profiles (test
casel-swirlnumber
=o)
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Figure 3.
Non-dimensional axial

velocity profiles (test
casel-swirlnumber

= 0.b)
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Figure 3.
Non-dimensional axial

velocity profiles (test
casel-swirlnumber

= 0.5)
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Figure 4.
Non-dimensional axial
velocity profiles (test
case 1-swirl number
-1)
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Non-dimensional axial

velocity profiles (test
case 1- swirl number
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Figwe 6.
The under-relaxation
factors used with the
three sludied algorithms
for test case 1

Figure 7.
Comparison of the
performance of the
three numerical
algorithms, test case 1

I - Except for S{.0, for which w velocity is oot calqilated
2 - Except for S=0.5, for which URFW.{.6, URFK=0.E, URFE={.8
3 - Except for S:1.5, for wbich URFK{.8, URFE{).8
4 - Errce?tfor S={.5,forwhisi URFW={.9, URFK'{.9, URFE{.9
5 - Exoept for S={.5, for which URFK=0.?, URFE {.7
6 - Except for S={.5, for which [JRFU=O.6, 1]RFV=O.6
7 . Exc@t for S=O.3, for which URFU=0.7, URFV=0.7
8 - Exc€pt for S.{.3; S{.5; S={.8, for which URFU=O.9, LJRFV={.9
9 - Exc€pt for S'{.5, forwhich URFH.?

Under relaxatior
factors [lRF

u p k a u w p k E

Swirl numbers S 0; 03 05 0.8; 1.0; 1.5
RUN I 16 x16

A
L
G
o
R
I
T
H
M

SIMPLE 0.5 0.5 ).8 t.0 0.9' 0.9' 0.5 0.5 0.8 1.0 0.9 0.9

PISO 0.8 0.8 0.8' 1.0 0.9 0.9 0.8 0.8 0.8 1.0 0.9 3 0.9'
LIMPO 0.8 0.8 0.9 t 1.0 0.9' 0.9' 0.8 08 0.8 1.0 0.9 0.9

RUN 2 - 32x32
SIMPLE 0.5 0.5 )7', 1.0 0.7 " o7" 0.5 0.5 o.E 1.0 0.8 0_8

PISO 0.8 0.8 0.8 1.0 0.9 ! 0.9' 0.8 0.8 0.8 1.0 0.8 0.8

LIMPO 08 0.8 J.g '', 1.0 0.9 0.9 0.8 0.8 0.9 1.0 0.9 0.9

RUN 3 - 64x64
SIMPLE 0.5 0 0.5 0 0.9 ' 0.8' 0.8 0.8 0.5 0.5 0.9 0.8 0.9 0.9

PISO 0.8' 0.8', 0.E' 1.0 0.8 0.8 0.8 0.8 0.8 1.0 08 0.8

LIMPO 0.8 0 0.8 o 0.9 t l-0 0.9 0.9 0.9' 0.8 o 0.9 I.0 0.9 0.9

Itera
tions

CPU
(sec)

Itera
tions

CPU
(sec)

Itera
tions

CPU
(sec)

Itera
tions

CPU
(sec)

Itera
tions

CPU
(sec)

Itera
tions

CPU
(sec)

Swirl no 00 0.3 0.5 U.U l. 0
RLIN I - 15x 15

A
L
G
o
R
I
T
H
M

SIMPLE 146 2.O t46 2.3 186 2.9 156 2.4 t73 2.6 2t9 3.3

PISO 7t 1.6 137 2.2 101 1.7 14t 2.6 t66 2.1 169 2.8

LTMPO 44 l.l 73 1.7 60 1.5 65 1.5 76 1.8 ill 2.5

RLIN 2 - 32x32
SIMPLE 583 33. I 4t7 28.8 1285 8E. I 537 37.2 498 39.2 587 40.5

PNO 229 t7.6 315 24.8 295 22.6 339 26.0 366 28.0 462 34.2

LIMPO lr4 I 1.3 161 17.2 1'11 19.8 130 13.4 t37 14.2 t57 18.3

RUN 3 - 64x 64

SIMPLE 1438 375 1650 620 4293 t472 2t68 724 1862 564 I 655 605

P$O 845 303 710 302 t128 782 839 330 943 399 996 401

LIMPO 377 174 255 241 744 626 322 323 447 243 504 250



d of the LIN,{PO algorithm (turbulent parameters and tangential velocity
predictor and corrector steps).

Tube uith sudden enlargenrcnt preceded by a quarl
Figure 8 shows tl'.e second geometry used to test the LIMPO algorithm,
consisting of two axial inlets followed by a conical quarl "and a sudden
enlargemint. The total mass flow of air is 8.21 x 10-3 kgs-l, at 298K, the
primary air flow being 6.8 x 10+ kgs-l. These flows correspond to inlet air
velocities of 117.1 ms-l and 26.7 ms-r respectively for primary and secondary
flows. The dimensions are Ro = 1.5 x 10-l m, R/Ro = 0.1, hlRo= 0.2, HlRo= 0.82
and URn = 10. The predictiirns were performed for a grid comprising 60 x 50
nodes in"the e and r directions respectiveiy. The quarl is an important device in
the flow structure. Therefore, although it represents only a small portion of the
physical geometry, 20 per cent of the grid nodes were used to overlay the quarl
domain- As above, the results were considered converged when the normalized
residuals of the equations were less than 5 x 10+. The inlet swirl number S for
the secondary air, defined by equation (18), was made equal to zero and unity.
As in the previous test case for this geomeky, the predicted values coincide for
the three algorithms used.
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Figure 8.
Sketch of the tube with

a step preceded by a
conical quarl

(test case 2)

Secondary
(swlrllng)

flow

'L
Symmetry axis

Primary flow

Frgure 9 shows the non-dimensional axial velocity profiles, for an inlet swirl
number of the secondary air equal to uniry at several axial stations. Within the
quarl region (X = 0.054m) the flow is mainly constituted by two emerging jets,
the inner jet having a greater velocity. The negative values of the Llvelocity
denote the existence of a recirculation zone, promoted by the pressure gradients
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Figure 9.
Non-dimensional axial
velocity profiles (test
case2-swirlnumber
=1)

Figure 10.
Comparison of the
behaviour of the three
numerical algorithms,
test case 2

due to the swirling flow. This recirculation zone starts inside the quarl and
spreads to downstream and to the sirmmeFy axis, as depicted in Figure 9 (X =
0.1m and f, = Q.ffip). Another recirculation zone can be observed in the corner
of the cylindrical wall with the step (X = 0.1m and r/R0 = 1). Further
downstream (X = 2.513m), the recirculation zones vanish Srving birth to a flow
that develops towards the outlet.

Figure 10 contains a comparison of the performances of SIMPLE, PISO and
LIMPO algorithms for the above mentioned swirl numbers, for the predictions
obtained with the 60 x 50 grid.

As in the previous test case, LIMPO algorithm performs much better in this
test case than the two other schemes for both the required CPU time and the

Swirl number
0.0 t.0

under-relaxation No
iter.

CPU
(sec)

under-relaxation No CPU
Alsorithm u D k E u v w p k e iter. (sec)

SIMPLE 0.5 1.5 l.( 0.( 0.6 5261 62s 0.: 0.5 0.1 t.c 0.7 0.7 4513 678

PISO 0.7 0.7 1.0 0.8 0.8 39s9 602 0.1 0.7 c.8 l.c 0.8 0.8 2919 500

LIMPO 0.7 J;l 1.t 0.8 0.8 2550 525 0.; 0.7 0.8 I 0.8 0.8 1333 4r2

X = 0,448 m
Umax ='1,3 rVs

1.0
0.6

; 0.6

5 o.4

; o.2
0.0
4.2

X = 2,513 m
Umax = 0,9 nrls



number of iterations to achieve convergence. The same numerical results were
obtained with LIMPO with, at least, a reduction of 36 per cent in the number of
iterations and of 13 per cent in the required CPU time.

Conclusions
The new algorithm presented herein, LIMPO, developed for the coupling
between pressure and velocities, allows the computation of two-dimensional
turbulent swirling flows with considerable savings in computing effort, when
compared with well-established algorithms - SIMPLE and PISO. Indeed, the
number of iterations and the required CPU time to achieve the converged
solution can be reduced by up to 50 per cent of the figures obtained with
SIMPLE and PISO algorithms.

The geometries chosen to evaluate the potential of the LIMPO algorithm
were two tubes, the first having a single sudden enlargement and the latter a
step preceded by a conical quarl. With the first geometry, LIMPO proved to
perform better than the other two algorithms, independently of the number of
grid nodes used and of the inlet swirl number. With the latter geomeky, the new
algorithm exhibited a much better performance, as far as computing effort is
concerned, demonstrating its potential for turbulent swirling flows, even within
complex geometries.
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