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SUMMARY

Domain decomposition techniques are very effective for flow simulation, especially in domains where
geometrical length scales of diflerent orders of magnitude are present. In this work azonal method is applied
to the mathematical modelling of a power station boiler of the Portuguese Electricity Utility. The
mathematical model is based on the numerical solution of the partial differential equations governing
conservation of mass, momentum and energy. The zonal method is presented and the conservative
treatment of the interfaces is described in detail. Emphasis is placed on the evaluation of the zonal method.
The results show that the influence of the zonal method on the convergence rate of the solution algorithm is
negligible. The zonal method does not influence the accuracy ofthe predicted results and there is continuity
of the dependent variables across the interfaces. A significant reduction in CPU time is feasible due to
a better distribution of grid nodes and consequent reduction in the total number of grid nodes required.

1. INTRODUCTION

The use of CFD codes for modelling utility boilers is becoming a widespread tool among the
scientific and industrial communities. It helps engineers to optimize the operating conditions,
reduce pollutants emission, investigate malfunctions in the equipment and evaluate different
corrective measures. It can also improve the design of new boilers.

Among the mathematical models available, those based on the numerical solution of the
equations governing conservation of mass, momentum and energy are the most powerful.l-6
They simulate all the relevant physical phenomena occurring in the combustion chamber of
a utility boiler: turbulent three-dimensional flow, combustion, heat and mass transfer. However,
the computational requirements involved are very high. Therefore, the numerical grids employed
are often too coarse, yielding grid-dependent solutions.

This problem was investigated by Gillis and Smith.T They pointed out that previous related
studies published in the literature have used grids that were too coarse. Their calculations for
non-reactive flows show that in wall-fired boilers, grids much finer than those previously
employed are required to achieve grid-independent solutions. The number of grid nodes required
would be much higher for coal-fired or fuel-oil-fired boilers. In this case, the presence of
geometrical length scales of different orders of magnitude prevents the accurate simulation of the
near burners region when a single grid is used. For example, the overall dimensions of fuel-
oil-fired boilers are three to four orders of magnitude higher than the characteristic dimensions of
the atomizers. Hence, a grid adequate for flow simulation in the small length scales regions would
be prohibitively expensive as far as computational requirements are concerned. To avoid this
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problem, it would be highly advantageous if grid refinement could be restricted according to the
local length scales. This can be accomplished using a domain decomposition technique.

Domain decomposition techniques were introduced many years ago for solving differential
equations. However, their application in CFD is much more recent. Nowadays, they are widely
employed in aeronautics and turbomachinery for the simulation of compressible flows. Zonal
methods8'e are among the more popular domain decomposition techniques. The physical
domain is divided into a number of subdomains and different grids are used for each of them. The
differential equations are then solved for each subdomain sweeping iteratively all the subdomains
until the iteration process converges.

Although zonal methods are very common in the calculation of compressible flows, their
application to the simulation of incompressible flows is rather limited. In some applications of
zonal methods to the calculation of incompressible flows, the grids generated for each block are

continuous across the interblock boundaries. 10' 1 1 1n this case, although it remains feasible to deal
with complex geometries, it is not possible to use different levels of grid refinement in different
zones. Therefore, this implementation of zonal methods is not suitable for our purpose. To allow
local grid refinement, it is necessary to have discontinuous grids across the interblock boundaries
(see References 12 and 13).

Calculation of incompressible reactive flows using zonal methods has seldom been attempted.
Wild er ol.ra have employed two zones in the mathematical modelling of a gas turbine combus-
tion chamber but no details about the treatment of the interfaces are given. Recently, Rachnerl5
applied a zonal method to flow modelling in an axisymmetric combustion chamber and to
a single crossflow jet in a rectangular channel. Zhu and Rodi16 calculated several laminar elliptic
flows using non-orthogonal and non-staggered grids and a zonal method with grid continuity
along the interfaces. None of these studies have considered the radiative heat transfer which plays

a dominant role in utility boilers. It should be mentioned that several authors have used two or
more subdomains in the mathematical modelling of industrial furnaces.lT 21 However, the
calculations in each zone were performed until convergence, and each subdomain was visited at
most three times. Therefore, coupling between the different zones is very weak and the applicabil-
ity of this methodology is limited.

The objective of this paper is the application of a zonal method to the mathematical modelling
of a utility boiler using a full three-dimensional model. Grids for different zones are independent
and discontinuous across the interfaces between different zones. A conservative procedure to
transfer data between adjacent zones is employed. Emphasis is placed on the validation of the
zonal method. Evaluation of the physical models is not made here. There are some measurements
available and the predicted results are in reasonable agreement with them.22

The mathematical and physical models are described in the following section. Then, the
numerical model and the zonal method are described in detail. The computations performed to
validate the method are presented in Section 4. The paper concludes with an evaluation of the

zonal method and its ability to overcome the problem of length scales of different orders of
magnitude.

2. MATHEMATICAL AND PHYSICAL MODELS

The governing Favre-averaged conservation equations for a turbulent high-Reynolds number
flow can be written in Cartesian co-ordinates as follows (see, e.g. Reference 23) :

Continuity

{oo,t: o (1)
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where f' stands for scalar properties such as mixture fraction or stagnation enthalpy and
,i, denotes a source/sink of a scalar quantity. Superscripts , - and " identify Reynolds-average
values, Favre-average values and fluctuation quantities in Favre-averaging, respectively.

The turbulence model

The mean-flow equations are closed by the k-e eddy viscosity/diffusivity model which com-
prises transport equations for the turbulalFinetic energy, k, its dissipation rate, e, and constitu-
tive relations for the Reynolds stresses u'iu} and turbulent scalar fluxes ur'f":
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The combustion model

Combustion was modelled assuming a simple chemically reacting system (SCRS). This model is
based on the assumption that the reaction rates associated with the fuel oxidation have very small
time scales compared with those characteristic of the transport phenomena. Chemical reactions
take place instantaneously as soon as the reactants are brought together. Under this assumption,
the instantaneous thermochemical state of the gaseous mixture can be determined as a function of
strictly conserved scalars. Another common assumption is the equality between the mass
dift'usion coefficients of all chemical species and the thermal diffusion. If, in addition, the system is
adiabatic then all the strictly conserved variables are linearly related. Hence, knowledge of one of
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them is sufllcient to define the instantaneous thermochemical state of the gaseous mixture.
Mixture fraction was the scalar variable chosen for this purpose. The transport equation (3) is
solved for mixture fraction with the source term set equal to zero.

In the SCRS model it is further assumed that reaction between the fuel and the oxidant can be
represented by a global one-step reaction. This hypothesis allows the calculation of the instan-
taneous mass fraction of the chemical species as a function of the mixture fraction. If the system in
the analysis were adiabatic, instantaneous values of enthalpy and mixture fraction would be
linearly related. However, this is not the case for utility boilers. Therefore, an additional
assumption about that relationship is needed. The piecewise linear relation suggested in
Reference 25 was employed. The temperature can be determined from the enthalpy using
well-known thermodynamics relations and density is obtained from the ideal-gas equation of
state.

In a turbulent flow, the mixture fraction fluctuates and knowledge of its mean value is

insufficient to allow the calculation of the mean values of chemical species mass fractions,
temperature and density. The fluctuating nature of the reactive flow may be accommodated
through an assumed probability density function (pdf) for the mixture fraction. A clipped
Gaussian distribution was assumed in this work. This pdf is completely defined by the mean value
and variance of the mixture fraction. The following modelled transport equation for the variance
of mixture fraction was solved:

(10)

Standard values were assigned to the constants, Crr : 2'8 and C"2: 2'0
The Favre-average and Reynolds-average values of chemical species mass fractions and

temperature are calculated as follows:

6(f)p(f) df
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where the mean density is given by

The radiation model

The radiative heat transfer is calculated using the discrete transfer method.26 This method is

based on the direct solution of the radiation intensity transport equation. If the participating
medium is assumed to be grey and the scattering coefficient in negligible, that equation can be

written as

(13)

(14)
dI rcoT-axI+ "dsn

The physical domain is divided into several control volumes and the temperature and absorption
coefficient are taken as constant in each one. For each control volume adjacent to the boundary,



A UTILITY BOILER 3405

the central point of the boundary cell is determined. The semihemisphere around that central
point is discretized in solid angles. These solid angles define the directions along which equation
(14) is integrated.

The total radiative heal flux for each cell on the boundary is calculated from the summation of
the radiative intensity of all the radiation beams arriving at that cell. The variation of the
radiative intensity of a radiation beam within a control volume is calculated during the solution
of equation (14). This variation represents the gain or loss of energy within the control volume.
The summation of the gain or loss of energy for all the radiation beams crossing the control
volume yields the source term of the energy conservation equation.

The emissiuity model

The absorption coefficient of the medium is required to integrate equation (14). In this work the
absorption coefficient was calculated from the emmissivity of the medium using the mixed grey
and clear gas formulation,2T extended to account for soot. The constants and weighing coeffic-
ients determined by Truelove28 were employed. The transport equation was solved for soot mass
fraction using a soot formation model2e and a soot oxidation model3o to compute the source
term.

Boundary conditions

The velocity, the temperature and the mixture fraction are prescribed at the inlet, whereas the
kinetic energy of the turbulence and its dissipation rate are estimated (see, e.g., Reference 20). At
the walls, the laws of the wall2a are employed. Although this approach may be questionable in
respect of heat transfer in complex recirculating flows, it does not present a serious problem for
the present application. In fact, heat transfer to the walls in utility boilers is mainly due to
radiation and the convective heat transfer has only a minor contribution. The temperature of the
walls was assumed to be constant and equal to 700 K. At the exit, a zero gradient normal to the
boundary is assumed for the dependent variables. The vertical velocity is then corrected to ensure
mass conservation.

3. NUMERICAL MODEL

Discretization of the gouerning equations

All the Eulerian partial differential equations governing conservation of mass, momentum and
energy can be written (in Cartesian co-ordinates) in the following general form:

(1s)

where f4 is the diffusion coefficient of the transported variable @. For the particular case of the
mass conservation equation, variable { is set equal to one and the right-hand side of the equation
is zero.

The governing equations are discretized over a staggered grid using the finite volume/finite
differences method. The equations are integrated over each control volume in the computational
domain and the Gauss divergence theorem is applied. In the discrelizalion procedure, the fluxes
through the boundaries of each control volume must be related with the nodal values. The
diffusive terms are discretized using central differences and the convective terms are discretized

ry:*,(',#,)*',
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using the hybrid upwind/central differences scheme. The discretized equations can be cast in the

lollowing form:
apdp:la,$; + b

i
(16)

where the index I runs over all neighbouring points of central grid node P, b denotes the source

term and the coefficients a; and op are combined convection/diffusion fluxes across the faces of the

control volume (see Reference 31 for details).

The discretization procedure is not affected by the domain decomposition technique. The

interblock boundaries behave as a different kind of boundary and the treatment required is

described below.

Grid and data structures

The physical domain is divided into a given number of zones. Adjacent zones are overlapped in
a small region designated hereafter as an overlapping region (see Figure 1). In this work, only
simply overlapped configurations are considered. This means that regardless of the number of
zones considered, overlapping regions may only involve two zones. This assumption simplifies

the transfer ofdata between adjacent zones. It could be relaxed at the expense ofa more elaborate
interface treatment.

Cartesian co-ordinates and a staggered variable arrangement are used in each zone. Adjacent
zones have almost independent grids with a single restriction related to the overlapping region.

The overlapping region must contain one, and only one, layer of control volumes of scalar

variables from each one of the adjacent zones. This is illustrated in Figure 1. In the overlapping
region, the control volumes for scalar variables have the same dimension along z direction for

zone (1)

lnterface
of zone (c)

Overlapping
region

zone (c)

lnterface
of zone (l)

f

t

I I rI Itt

r
vv*

Figure l. Overlapping region between two zones

- lrx l-'
/tI

xl -tl/- lrIrz
/ ll
rl

I

I

I

I

\l

lr
l-(r
I

t
ll
lzlr
I

I



A UTILITY BOILER

both adjacent zones. However, the control volumes of zone (c) are independent lrom those olzone
(f) along directions x and y. Therefore, the adjacent grids are generally discontinuous in the
overlapping region.

Domain decomposition does not extend to the calculation of the radiative heat transfer. An
independent global grid is used for this calculation.

In each iteration of the solution algorithm, each zone of the domain is treated sequentially.
Therefore, the subroutines for the calculation of the coefficients of the discretized equations, the
insertion of the boundary conditions and the solution of the sets of discretized equations should
be independent ofthe zone considered. Hence, the dependent variables for all the zones are stored
sequentially in one-dimensional arrays.

A three-dimensional array is used to identify the kind of boundary condition (inlet, outlet, wall,
symmetry plane or overlapping region) for each boundary cell in each zone. The first index of this
array identifies the zone and the orientation of the cell face (north, south, east, west, up or down).
The last two indices locate the boundary cell on the boundary zone. The fluxes across the
interfaces of each zone are also stored in three-dimensional arrays whose indices are similar to
those just described.

Treatment of the interfaces

The solution of the governing equations for each zone requires previous knowledge of the
fluxes across the overlapping regions of the zone considered. Continuity of the dependent
variables and flux conservation should be ensured across the interfaces. The global fluxes
conservation is satisfied by requiring that

(r7)

where the indices extend over all the control volumes in the overlapping region between zones (c)

and (f).
In this work, an integration procedure is used to transfer data from one zone to the other and

an interpolation method is employed to transfer data reversely. Similar techniques have been
used by others.s'13'32 For illustrative purposes, the ovr 'lapping region shown in Figure 1 and the
correspondent interface ofzone (c) sketched in Figure 2 are considered (co-ordinates are denoted
by x and y rather than x1 and x2 to avoid a notation with too many subscripts). To solve the
governing equations in zone (c), the fluxes across the north interface, F j"] must be known. These
fluxes are calculated from the fluxes F!tl. The fluxes plt.)^are obtained during the solution of the
equations in zone (f) using the values of the dependent variables calculated for planes ft : I and
k : 2 of zone (f ). The fluxes f !'.\^ are constant in each boundary cell of zone (f ). Calculation of
f'!i]involves an integration of f ill across the interface of the zone (c), yielding

F!:l: I L f,.i,,,^Fl'.)^ (1 8)

f,.i.,.^isa weighing factor equal to the fractijnlr rn. area of cell (1, m) of zone(f) lying within the
cell (i,-7) of zone (c). These grid cell faces of zones (f) and (c), shown in Figure 2, coincide on the
z-plane interface. The weighing factor is given as follows:

^ rfr - (c) ffl - (cl
Ior xi i yz S Xi- l7z oI xi- r1z Z xi+r1z

fi.i.t,^:o (19a)
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otherwise,

.f,. j,,,^ : [min(xi"] ,p, *l'l rp) - max(x!! r,r,.x[t) 172)] 
* [min(y|"] rp, yll\* rp)

- max(vj"] ,1r, ![| ,p)lll,ll'] rp - xl') rp)* (vl?* rp - v!?- rp)l (19c)

Similar expressions may be written for interfaces along planes defined by directions (x,z) or 1y,z) .

Now suppose that Figure 2 represents the interface of zone (f). During the solution of the
governing equations in zone (c), the fluxes ,F f] across the interface of zone (f ) were computed from
the values of the dependent variables at the planes k : k^u, and /< : k^u*, r (see Figure 1).

A bilinear interpolation method is used to calculate f jrl from r!"1. fnis is followed by an
adjustment procedure to guarantee global flux conservation. The bilinear interpolation method
yields

Fr:;, : - ( *, -'1.",Frri, ;. li;' - li"l FIj",)4ar4
\ri','r-xi"' ' xl:',-xl'' " //;i,-yr!"'
/ (t) (c) (c) (fl \ (f) (c)

* ( * FIJ1'.;*, * -", -i!_1-1-JL 

FIj"l, ) H, (20)
\Xi+r-Xi Xi+t-Xi /!i*r-li

where the star denotes a flux per unit area. The adjusted flux is then

(21)

The numerator in this equation gives the total flux for zone (c) and the denominator is equal to
the total flux computed from equation (20) for zone (f). The ratio yields a corrective factor
ensuring that equation (17) is satisfied.

The control volumes for the velocity component normal to the interfaces are not contained in
the overlapping region since we are dealing with staggered grids. This is illustrated in Figure 1.
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However,the treatment of the interfaces is not affected. The only difference lies in the calculation
of the fluxes that are stored during the treatment of each zone. Considering, for example, zone (c)

of Figure 1, the fluxes f'lij are still computed from F' !? using equation (18). The diffeience lies in
the previous calculation Rltl during the treatment of zone (f). For scalar variables and velocity
components along x and y direction, fluxes f'!o. across the interface of zone (c) are calculated
using the values ofthe dependent variables at planes lc : 1 and k:2 ofzone (f). But the velocity
component along z direction is stored at the interface of zone (c). Therefore, it is directly used for
the calculation of Flll.

Solution algorithm

The SIMPLE algorithm was adapted to the zonal method described above. It can be
summarized as follows:

(i) Guess a pressure field for the whole domain.
(ii) Set to one the variable i that identifies the zone under treatment; set to zero the sums of

the absolute normalized residuals for every dependent variable.
(iii) Calculate the fluxes for the overlapping regions of zone i using the treatment of the

interfaces described above.
(iv) Solve the momentum equations for zone i and store the fluxes at the interfaces of

overlapping regions.
(v) Solve the pressure correction equation for zone I and store the fluxes at the interfaces of

overlapping regions.
(vi) Correct the pressure and velocity fields for zone i.
(vii) Solve the scalar transport equations for zone i and store the fluxes at the interfaces of

overlapping regions.
(viii) Calculate the thermochemical properties of the gaseous mixture for zone l.
(ix) Update the sums of the absolute normalized residuals for every dependent variable by

adding the contribution of zone i.

(x) If ; is lower than the number of zones, increase i by one and return to step (iii); otherwise,
proceed to step (xi).

(xi) Solve the radiative heat transfer equation.
(xii) Check if the convergence criterion is satisfied. If not, return to step (ii).

The convergence criterion demands the normalized sum of the absolute residuals for every
variable over all the control volumes to be less than or equal to a prespecified value. The
normalization value is the mass flow rate for the pressure correction equation, the inlet mo-
mentum for the momentum equations and the inlet flux for the remaining variables. The sets of
algebraic discretized equations are solved using the Gauss Seidel line-by-line iterative procedure.

4. RESULTS AND DISCUSSION

The modelled boiler

A power station boiler of the Portuguese Electricity Utility was studied in this work. It is
a natural circulation drum boiler with a pressurized combustion chamber, parallel passages by
the convection zone and preheating. It is prepared for outdoor installation and fuel oil burning,
being easily adapted to natural gas and fuel oil/natural gas burning. Vaporization of the fuel is
assumed to occur instantaneously. The boiler is fired from three levels of four burners each,

3409
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placed on the front wall. A simplified sketch of the boiler is presented in Figure 3. At maximum
capacity (11 I tlh at 167 bar and 545"C) the fuel mass flow rate is 15'8 kg/s, the air mass flow rate is
238'7 kgls and the output power is 250 MW.

The present application is restricted to the combustion chamber as shown in Figure 3. Only
one-half of the geometry is considered with symmetry boundary conditions prescribed on the
symmetry plane. The skew wall in the ash hopper region was discretized and treated in a stepwise
fashion by the flow code to fit into the Cartesian grid system employed. This is a standard
approach when modelling utility boilers.l - 7 However, the actual shape of the ash hopper is taken
into account as far as the radiation is concerned.

Comparison between the global and zonql treatments

Three zones were considered and the grids used are shown in Figure 4.The finest grid is used in
the burners region (zone 1) and coarser grids are employed in the ash hopper region (zone2) and
above the burners level (zone 3). However, for comparison purposes, calculations were firstly
performed for a single domain (test case 1). In this case, the refinement level of the grid in zone
1 was extended to cover the whole domain. Secondly, this grid was employed again, but with the
domain divided into the three zones described above (test case 2). In this case, there is grid
continuity across the interfaces and the total number of grid nodes becomes higher, since control
volumes in the overlapping region are treated twice. Finally, calculations were performed (test

case 3) using in each zone the grids depicted in Figure 4. A coarser mesh with 10 x 9 x 20 grid
nodes was used for the calculation of the radiative heat transfer for all the test cases.

The computed results are summarized in Table L The calculation of the radiative heat transfer
was only performed every ten iterations. Convergence was achieved when the sums of the
absolute residuals were less than 2 x 10 3.

Comparison of the results obtained for test cases 1 and 2 (see Table I) reveals that the
convergence rate is not influenced by the domain decomposition method. In fact, the number of
iterations for test cases 1 and 2 is about the same. The CPU time increases from case I to case
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Figure 3. Sketch of the boiler
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Figure 4. Domain discretization using a zonal method

Table I. Number of iterations and CPU time required for convergence

3411

Test case
Partial number of grid

nodes

ZONE

II
I

ZONE

I

-Y
ZONE

CPU Time
Total number Number of (VAX
of grid nodes iterations 9000-440)

16x34x60
Zone l:16x34x44
Zone2:16x34x8
7.one 3'. 16 x 34 x 10

Zone 1:16x34x44
Zone2:10x18x6
Zone 3'. 16 x 18 x 8

30940

32028

21050

902

890

779

6h 45m

7h 11m

5h 34m

2 due to the higher number of grid nodes resultant from the overlapping regions and due to the

time required to transfer data between adjacent zones. The total heat fluxes to the walls and the

mean values at the exit section are summarized in Table II. They show that the influence of the

zonal trearment on those average results is negligible.
Using the domain decomposition presented in Figure 4,the zonal method (test case 3) allows

a reduction ol 17.5 per cent in the CPU time required to achieve the converged solution compared

to the conventional global treatment of the physical domain (test case 1). The number of grid

nodes used in test case I is only 12'6 per cent smaller than in test case 3. Therefore, significant
savings in CPU time can be achieved using the domain decomposition technique. Moreover, the

zonal method allows much better resolution of small scale processes to be achieved using a given

number of grid nodes due to the better distribution of grid nodes within the physical domain. In
a case in which physical scale varies by orders of magnitude, a single grid is not adequate and the

use of a multiblock grid is highly recommended.
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The evolution of the residuals is displayed in Figure 5 for both cases. It confirms that the
convergence rate is not affected by the zonal method employed. Moreover, the zonal treatment of
the flow domain has no significant influence on the total heat fluxes at the walls and mean values
at the exit section (see Table II).

The predicted heat fluxes at the walls are displayed in Figure 6 for the global and zonal
treatments of the domain (test cases 1 and 3, respectively). The grids used for the calculation of the
radiative heat transfer are the same in all the test cases. However, the gas temperature and
absorption coefficient in each control volume are calculated from the values computed using the
finer grids employed in the flow calculation. These grids are different according to the global or
zonal trealments of the domain yielding different gas temperature and absorption coefficient
fields. Nevertheless, it can be seen that the heat flux distributions are very similar.

Selected vertical profiles of predicted temperature, mixture fraction and oxygen mass fraction
are shown in Figure 7. Some profiles are contained in a vertical plane passing through the axes of
the burners close to the side wall (y : 2'43 m) at different distances from the front wall (x : 2 m
and x : 4 m). The other profiles are contained in a vertical plane midway between vertical planes
crossing the axes of the burners at y:2'43 m and !:4'62m. Very good agreement is found

LOGlO
1

o 250 500 750 1000

Iteration
Figure 5. Convergence rate for the global treatment of the physical domain (test case 1) and zonal method (test case 3)

Table II. Predicted total heat fluxes to the walls and mean values at the exit section

Test case

6

d -1
a
!)
H

-2

Total Front wall
radiative Side wall
heat fluxes Back wall
(MW) Ash hopper

Velocity (m/s)
Mean values Temperature (K)
at the exit Mixture fraction
section Oxygen mass fraction

Fuel mass fraction

l4.t t4.2
1551 1561
0.060 0.060
0.031 0.031

5.7 x 10-6 6'7 x l0 6

24.9
47.7
32.4
15.9

14.r
1556
0.060
0.031

5'7 x l0- 6

24.8
47.6
32.2
16.0

24.5
47.2
32.0
15.3
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a)

Front Wall Side Wall Back Wall

b)

Front Wall Side Wall Back Wall

Figure 6. Predicted heat fluxes to the walls, kW m 2 (A-525, 8-500, C-475, D-450, E-425, F-400, c-375, H-350, I-325,
J-300, K-275, L-250,M-225, N-200, O-175, P-l50) : (a) Global treatment; (b) Zonal method

between the profiles obtained for global and zonal treatments of the domain. The small
differences observed may be attributed to the different grid refinement in each zone.

Continuity of the dependent uariables across the interfoces

The results presented so far show that the convergence rate is not influenced by the zonal
method employed and the solution obtained is similar to the one computed using a conventional
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method with no domain decomposition. Now, continuity of the dependent variables across the

interfaces will be examined. Only the results computed using the zonal method (test case 3) are

considered below.
Figure 8 shows temperature and fuel mass fraction distributions for two vertical planes passing

through the axes of the burners (y : 2'43 m). The contours were plotted independently for each
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a)

Y=2.43m x=3.76m

Y=2.43m
x=3.76m

Figure 8. Predicted contours using the zonal method: (a) Temperature, K(A-2000, 8-1900, C-l800, D-1700, E-1600,

F-1500, c-1400, H-1200, I-1000); (b) Fuel mass fraction (A-0'50, B-0'10, C-0'05, D-0'01, E-0'005, F-0'001, G-0'0001)

one ofthe zones using the respective predicted results. So, discontinuities across the interfaces can

be only due either to the discontinuities ofthe dependent variables or to the interpolation errors

of the plotting routines. The discontinuities of the contours across the interfaces are rather small.

Therefore, the zonal method does not seem to affect the continuity of the dependent variables
across the interfaces.

l=4.62m

Y=4.62m:
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zone 1 zone 3

zone 1 zone 3

Figure 9. Predicted contours in the overlapping region between zones 1 and 3: (a) Temperature, K(A-2000,
B-1900, C-1800, D-1700, E-1600, F-1500, G-1400, H-1200, I-1000); (b) Fuel mass fraction (A-0.25, B-0'15, C-0.10, D-0.08,

E-0.07, F-0.06, c-0.05, H-0.04)

However, the contours displayed in Figure 9 are more impressive. They show the predicted
temperature and mixture fraction distributions in a horizontal plane containing the grid nodes
within the overlapping region between zones 1 and 3 (z : l1 m). Contours for zone I were plotted
from the results computed using a mesh with 16x34 grid nodes along directions x and y,
respectively, for plane k : k^u*: 44 (see also Table I). Contours for zone 3 were plotted from the
results obtained using a mesh with 16 x 18 grid nodes along directions x and y, respectively, for
plane k: 1. Figure 9 clearly shows that, regardless of the mesh considered, the predictions are
very similar demonstrating the continuity of the dependent variables across the interfaces.

5. CONCLUSIONS

In this paper a conservative zonal method was applied to the mathematical modelling of a power
station boiler of the Portuguese Electricity Utility. The zonal method was evaluated by perform-
ing the following analysis:

(a) Discretization of the physical domain using a single grid and comparison between the
results calculated for two cases:
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(i) global treatment of the domain (test case 1) and
(ii) zonal method with three zones continuous across the interfaces (test case 2).

(b) Discretization of the physical domain using three zones discontinuous across the interfaces
and comparison between the results computed for two cases:

(i) zonal method applied to this domain discretization (test case 3) and
(ii) global treatment of the domain considered previously (test case 1).

(c) Analysis of the continuity of the dependent variables across the interfaces for test case 3 in
which a zonal method with discontinuous grids across the interfaces was employed.

The following conclusions may be drawn from the analysis carried out:

(1) The influence of the domain decomposition procedure on the convergence rate of the
solution algorithm is negligible.

(2) There is a small overhead in CPU time due to data transfer between adjacent zones.
However, the zonal method allows grid refinement to be confined to small regions. There is
a better distribution of grid nodes within the domain and a reduction in the total number of
grid nodes can be achieved. This largely compensates the data transfer overhead. Globally,
substantial reductions in CPU time are feasible.

(3) Owing to the better distribution of grid nodes within the physical domain, the zonal
method allows much better resolution of small-scale processes to be achieved using a given
number of grid nodes.

(4) The zonal method does not influence the accuracy of the predicted results.
(5) There is continuity of the dependent variables across the interfaces.

In this paper, attention was focused on the validation of the domain decomposition procedure.
This is better accomplished with a small number of zones and, therefore, only three zones were
employed. However, it is anticipated that a much more impressive reduction in CPU time should
be achieved by increasing the number ol zones since this would allow grid refinement to be
confined to the burners region. This is the subject of future research.

NOMENCLATURE

ai, Qp combined convection/diffusion coefficients of the discretized equation at
nodes i and P, respectively.

b source term of the discretized equation
C r, C2, C t, constants of the /<-e turbulence model

Cgr, Csz constants of the modelled transport equation of the mixture fraction variance
f mixture fraction

f"2 variance of mixture fraction
ft,j,,,- fraction of control volume (I,m) contained within control volume (i,7f- see

Figure 2

Fi, i flux across the cell face of control volume (r, j)
G generation of turbulent kinetic energy
I radiation intensity
k turbulent kinetic energy
p pressure

p(f) probability density function
s direction of propagation of a radiation beam
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Sd source term of the discretized @-equation
T temperature
Lti velocity component along i direction
x; Cartesian co-ordinate in i direction

Greek symbols
I o diffusion coefficient of variable @

6i: Kronecker tensor
e dissipation rate of turbulent kinetic energy
rc absorption coefficient
p dynamic viscosity
p density
o Stefan-Boltzmann's constant

ok, ot constants of the k-e turbulence model
o6 Prandtl-Schmidt number of variable @

0 dependent variable in a transport equation

Subscripts
g gas

i spatial direction
t turbulent
A dependent variable

Superscripts
(c), (f) identification of a zone

- Reynolds-averagevalue
- Favre-average value
" fluctuation quantity in Favre-averaging
x identification of a flux per unit area
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